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ABSTRACT 

Two smoothing techniques are tested as a practical means of allowing a larger time step in the numerical 
integration of a primitive equation free-surface model. The numerical integration uses a finite-difference grid and 
operators based on the method of Kurihara and Holloway. 

A time step six times larger can be used with a corresponding six-fold decrease in computer time, by implementing 
the weighted averaging procedure given by Langlois and Kwok in their description of the Mintz-Arakawa general 
circulation model. A Fourier filtering scheme permits the use of a time step 10 times larger, and results in a five-fold 
improvement in computer time. After 10 days, the geopotential and wind fields obtained with these techniques still 
closely .resemble the unsmoothed fields, the closest correspondence being found with the Fourier filtering technique. 

In another set of experiments, steady-state solutions to special cases of the governing analytic equations are 
used as initial conditions in a test of the accuracy of the grid and operators. These steady-state solutions are 
preserved satisfactorily for the 10-day integration period. 

1. INTRODUCTION 

In a previous paper (Sankar-Rao and Umscheid 1969), 
we tested a numerical scheme based on the grid and finite- 
difference operators of Kurihara and Holloway (1967). 
The numerical model was of an incompressible homo- 
geneous inviscid fluid in hydrostatic equilibrium, having 
a free surface. It was found that to achieve acceptable 
accuracy for the cases tested, the grid had to be modified 
by increasing the resolution near the poles. A similar 
result was obtained by Dey (1969) using real data. 

The present investigation, conducted with the same 
numerical model, has two purposes. First, in our earlier 
study, the increased resolution required near the poles 
necessitated a proportional decrease in the time step used 
in the numerical integration. Mere, we test two smoothing 
techniques as a practical means of allowing a larger time 
step without modifying the large scale features of the 
flow. Second, in another set of experiments, a test of the 
accuracy of the numerical scheme for extended predictions 
is made by using initial conditions which are steady-state 
solutions for special cases of the governing equations. 
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9. MODEL EQUATIONS AND INlTlAL ~ ~ ~ ~ ~ T ~ ~ ~ S  
The appropriate differential equations for the model 

atmosphere are 

a4v COS e e!=- a4u --- at a COS eax a COS eae’ 
a h - -  aw2 abuvcose 
at a COS eax a COS eae -- 

and 

a h v  a&zCose tan 8u a4 a ? =  - U4-4 zaa’ at a cos e ax-a cos e a e - ( f + 4  
where 4 is geopotential, u and v are velocity components, 
f is twice the component of the rotating sphere’s angular 
velocity about the local vertical as given below, 0 is the 
latitude, is the longitude, and a is the radius of the 
globe. The finite-difference operators are identical to those 
used previously by Sankar-Rao and Umscheid (1969). 

Two sets of initial conditions are utilized in the present 
experiments. For the smoothing tests (exp. 1,  2, and 3) the 
balanced initial conditions given by Phillips (1959b) are 
used. These were tested by Kurihara (1965), Grimmer 
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and Shaw (1967)) and Sankar-Rao and Umscheid (1969). 
Figure 1 depicts these initial conditions. 

For experiments 4 and 5 the second set of initial con- 
ditions is used. They are steady-state analytic solutions 
of the equations having no rotation or with rotation of 
the globe about an axis through the two vortex centers. 
The initial conditions for experiment 4 are purely zonal 
flow and for experiment 5 are cross-polar flow. 

The two flows are essentially the same but have different 
orientations to the finite-difference grid. The fields with 
purely zonal flow that serve as the initial conditions for 
experiment 4 are given by 

u=u, cos e, 
v=o, 

and 

In this case j in eq (1) is the Coriolis parameter, given 
by j='2Q sin 6. The initial conditions for experiment 5 
are similar to those tested by Dey (1969) except that 
that study was for a nonrotating sphere. The fields with 
cross-polar flow used here are depicted in figure 2 and 
are given by 

u=-uQ cos sin 8, 

V = U ~  sin h, 

and 

Here f in eq (1) is formally given by f=2Qcos 0 cos A. 
The constants uo and & were taken as 

and 
uo = 5 m/s 

+,, = 2.94 x 104mzs-2. 

Also, 8, the magnitude of the rotation as described above, 
has the value 7.292X s-l. 

3. SMOOTHING TECHNIQUES 

Two smoothing techniques are tested in this study. 
The first technique applies weighted averaging of the 
form given by Langlois and Kwok (1969) in their de- 
scription of the Mintz-Arakawa general circulation model. 
This averaging is over longitude and is accomplished by 
using 

where rL is the field to be smoothed, i is the index of 
latitude, and j is the index of longitude; )Lm is the result 
of m averaging. operations starting. with the original 

FIGURE 1.-Initial height field and wind vectors for one octant of 
the globe for experiments 1, 2, and 3. The computer-drawn 
height contours increase in value in steps of 0.5 km from con- 
tour 2=8.5 km. 

6 

FIGURE 2.-Analytic steady-state solution used as initial conditions 
for experiment 5. The computer-drawn contours increase in value 
from contour 1=2.79 km in steps of 30 m. 
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TABLE l.--Smoothing parameters for modified Kurihara grid with 
resolution N=ZO, KP=8  (Le. 8 points added at each lat.) 

e Y P  D M 
~~ ~ 

(deg.) 
07.75 0.1189 11.46 11 
83.25 0.1017 4.26 4 
78.75 0.1137 2 82 2 
74.25 0.07565 2.21 2 

unsmoothed field $. The weight y, is given by 

D,-1 
Ti=- 

where 
Ae 

cos BiAXt' 
D*= 

M,=I[NT(D,) that is, the largest integer 5 D i ,  and 
A8 and AXI are grid intervals in latitude and longitude. 
In  this study, smoothing is performed only for latitudes 
where D i 2 2 .  For these latitudes, table 1 gives the smooth- 
ing parameters as used in experiment 2. The objective 
of this form of averaging is to have the time step deter- 
mined principally by the latitudinal rather than the 
minimum longitudinal grid spacing. To suppress waves 
moving in the longitudinal direction with wavelengths 
less than A8, both the zonal flux (w) in the divergence 
terms and the pressure gradient term in the u momentum 
equation are smoothed (Langlois and Kwok 1969). This 
can also be viewed as creating an effective AA equal to AB. 
In this study smoothing is carried out at every time step 
by applying eq (2) with m=Mi where D f 2 2 .  

Neither the mean value of the field nor the wave 
number and phase of a Fourier component are changed 
by this type of smoothing. However, the amplitudes of 
the components are changed in the ratio u, given by 

if we consider e. Fourier expansion for 2K equally spaced 
points, of the form 

K- 1 
# , . , = A , , , , + ~  n=l Q,,,i cos r$+an,i)+% cos@. 

Here a n , i  is the phase, 4?n,i and En,$ are the amplitudes 
before and after smoothing and A , ,  is the mean value of 
the field. Figure 3 shows u as a function of wavelength at  
two high latitudes. Although a strong damping of the 
shorter wavelengths is evident at  these latitudes, there is 
also considerable damping of the longer wavelengths. 

= a  z 7 - lr 0 
K 3 2 

c 2  3 4 6 IO 
AX 

- 
3 

FIGURE 3.--Curves showing the variation of u, the ratio of the 
smoothed to unsmoothed amplitudes, far O= 83.25' and 0=78.75' 
lat. L is the wavelength and Ax is the grid length in the east-west 
direction. LlAx thus represents the wavelengths in units of grid 
lengths. 

In the second technique of smoothing, instead of per- 
forming weighted averaging, Fourier andyses of the same 
fields are made along latitude circles; this is followed by a 
reconstruction of the fields with the components of the 
shorter wavelengths truncated, thet is, 

with an equivalent criterion for 2K+l  points. 
A reconstructed field is thus composed only of wave- 

lengths greater than At9 and these components are un- 
altered. Were also the mean value, the wave numbers, and 
the phases are not changed. The technique of Fourier filter- 
ing has also been used by Phillips (1959a) for the purpose of 
overcoming nonlinear computational instability . 

EWBCAU. WESULUS AND CQNCLMSOONS 
For purposes of comparison in the analysis of the results, 

the resolution and integration scheme used in experiment 
7 of the earlier study (Senkar-Bao and Umscheid 1969) 
were also adopted here in experiments 2 and 3. There are 20 
points from pole to Equator (N=20) and the Kurihara 
grid is modified by adding an additional 8 points a t  each 
latitude (KP=8).  A leapfrog time-integration scheme is 
used. The tests with smoothing in experiments 2 and 3 can 
then be compared with our earlier experiment 7 (repro- 
duced here as  experiment l), for which no smoothing was 
used. 

Table 2 gives the time step used in each experiment, a 
factor giving the relative computer time, and the range of 
total energy. Although energy conservation is not formally 
guaranteed when the smoothing schemes are employed, 
the global energy budget is still very accurate for the 
period of integration. It is important to note in this connec- 
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TABLE 2.-The time step, the computer timing (normalized to 1 for 
experiment I ) ,  and the range of the total energy (RTE) in percent of 
The initial value for the 10-day integration 

N 

Experiment A T  Relative timing RTE 

a) 
No smoothing 1 60 1 4.2x10-8 
Weighted averaging 2 a60 1/6 7.7XlOO-a 
Fourier ffltering 3 600 US 4.4XlO-S 

a 

- 
days for experiment 2;  contour values are the same as in figure 4. 

FIGURE 4.-Forecast height field and wind vectors a t  the end of 10 
days for experiment 1; this is identical to experiment 7 of authors’ 
previous paper (1969). The contour values decrease in steps of 
0.5 km from contour 2=8.5 km. 

tion that the polar regions, where smoothing is performed, 
constitute less than 5 percent of the area of the globe. 

Although experiment 3 permits the largest time step, a 
slightly better timing improvement is obtained for ex- 
periment 2 because of the lengthier computation required 
for the fast Fourier transforms used in the Fourier tech- 
nique of experiment 3. 

The geopotential and wind at the end Of lo days 
for the smoofhi% experbents are shown in figures 4, 5,  
and 6. I t  can be seen that the fields corresponding to experi- 
ments 1 and 3 are nearly identical. Experiment 2 is also 
very similar to experiment 1,  although the fields are some- 
what different in the higher latitudes. The similarities and 
differences in the mean zonal velocities, especially the 
appearance of easterlies in experiment 2, are displayed in 
figure 7. 

FIGURE 6.-Forecast height field and wind vectors at the end of 10 
days for experiment 3; contour values are the same as in figure 4. 

As suggested by Dey (1969), the analytic steady-state 
solution corresponding to purely zonal motion is found to 
be accurately represented by the Kurihara grid and opera- 
tors even without the addition of extra points and the 
accompanying smoothing. The results of experiment 4 
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FIGURE 7.-Zonal mean east-west wind velocity (u)  a t  the end of 10 
days for experiments 1, 2, and 3. Westerly winds have positive 
speeds. from contour 1=2.79 km. 

FIGURE 8.-Forecast height field and wind vectors at the end of 10 
days for experiment 5; contour values increase in 30-m steps 

indicate only very slight changes in the fields for the 10-day 
integration, and these fields are therefore not presented. 
Although changes do occur in the fields corresponding to 
cross-polar flow tested in experiment 5, the large-scale 
features of the flow are preserved for the 10-day integra- 
tion period as can be seen from figure 8. 

The results of this study indicate that the smoothing 
techniques tested may be a practical means of increasing 
computational efficiency in global numerical prediction 
without loss of accuracy in the large-scale features of the 
flow. In particular, the Eurihara operators and the modi- 
fied Kurihara grid are rendered feasible for global integra- 
tion of the complete primitive equations of atmospheric 
motion. 
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